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Abstract For a specific functional group, considered as a molecular fragment, the
rest of the molecule produces a range of interactions which influence various properties
of the functional group. Considering a family of molecules with the “same” functional
group, the range of variations in properties determines the range of chemical reactivity
of the functional group, and a similar conclusion is valid for more general molecular
fragments. By the application of conventional as well as more advanced indices of
fragment properties, including local electron density shape characterization, various
shape variation indices can be introduced for fragments, and their relations to the
holographic properties of electron densities can be examined.

Keywords Molecular fragments · Molecular similarity · Fragment similarity ·
Fragment shape variations · Holographic electron density theorem · Transition
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1 Introduction

The theoretical interpretation and modeling of chemical reactivity have been important
goals already in the early days of the post-Pauling era of Quantum Chemistry, and this
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field continues to be the focal point of current research activity [1–5]. Besides tradi-
tional reactivity approaches and reaction dynamics studies, explicit considerations of
large regions of potential energy surfaces [6–12], as well as the study of local and frag-
ment electron densities [13–34] have provided clues to some questions of reactivity,
as well as to novel methods for the construction of macromolecular representations
exploiting fuzzy fragment densities. In particular, the study of quantum chemical func-
tional groups [22] has provided links between earlier and more advanced approaches
to the interpretation of some chemical interactions relevant to reactivity.

A quantum chemical functional group has been defined [22] as a family of nuclei
from a given molecule together with the associated fuzzy electron density fragment
obtained by the fragment density matrix approach proposed in refs. [21,24], if in
the complete molecule there exists a molecular isodensity contour (MIDCO), such
that this contour separates the given nuclear family from the rest of the nuclei of the
molecule. A MIDCO has been defined as

G(a, A, K) = {r : ρ(r) = a}, (1)

ρ(r) = ρ(r, A, K), (2)

where ρ(r) is the short notation for the electronic density ρ(r, A, K) of molecule A
with nuclear configuration K. Note that ρ(r, A, K) is a function of position vector r,
and in Eq. (1) a is the density threshold value for the isocontour.

The presence of such a MIDCO, that separates the given nuclear family from the
rest of the nuclei of the molecule, indicates some degree of local “autonomy” of this
nuclear family within the molecule. A similar situation, with more obvious “auton-
omy”, is more clearly recognizable for the complete family of all nuclei of one mol-
ecule placed in the proximity of some other molecules only weakly interacting with
the first molecule. Obviously, the nuclei of the first molecule do possess some degree
of autonomy in relation to any other neighbor molecule, also indicated by the fact that
there must exist some MIDCO of the combined system that separates the nuclei of the
first molecule from the nuclei of the second molecule. Returning now to the problem
of a functional group within a single molecule, indeed, for most functional groups
regarded as such by organic chemists, the above condition of MIDCO separation is
fulfilled even within a single molecule.

It is clear, however, that this functional group “autonomy” is limited. In fact, one
such limitation follows from a consequence of the Hohenberg–Kohn Theorem [35] of
density functional theory, and from an extension of the closed and bounded set results
of Riess and Munch [36] to open and boundaryless molecules. The actual fragment
result, applicable to fragments of real, boundaryless molecules is the Holographic
Electron Density Theorem [37], stating that in a non-degenerate ground state, any
positive volume part of the molecular electron density contains the complete infor-
mation about the entire molecule. This implies that no two different molecules can
have exactly identical local electron densities for their functional groups, that is, com-
plete “autonomy”, without any influence on the functional group electron density from
the rest of the molecule is impossible. In fact, more is true: the actual differences in
the local electron densities of functional groups completely determine the rest of the
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molecule, that is, the affiliation of each and every functional group. Functional groups
of the same chemical formula are all different if they belong to different molecules,
and their differences fully distinguish the complete molecules they belong.

This observation raises the following question: is it possible to provide quanti-
tative indices for these influences on functional groups? Whereas electron density
properties appear as the natural tools to answer this question, following an earlier
study of molecular fragment “Site Dominance Indices” [38], we can apply similar
ideas to define “fragment shape persistence indices” and more importantly, “frag-
ment shape variation indices” in terms of general similarity measures. Although such
general similarity measures are useful and are often easier to connect to traditional
chemistry concepts, nevertheless, in some of the applications we may return to the
specific case of electron density shape quantification using Shape Groups [23,39–
48]. Both the general and the electron density shape similarity measures appear use-
ful, and are expected to become tools which fit well within the tool-kits of density
functional theory and quantum similarity measures of Carbo and related approaches
[49–68].

The above problems also have strong connections to latent properties of molecules,
that is, to properties not actually exhibited, but triggered by some interaction (which
actually changes the molecule); after the interaction has taken place, this formerly only
latent property also becomes one that is exhibited, now by the new, modified system.
In fact, in any molecular process, the changes can be interpreted in terms of latent and
exhibited properties: as the molecular process is completed, some latent properties
become exhibited, and (with reference to the inverse process) some exhibited prop-
erties become latent. In this context, the Holographic Electron Density Theorem for
Latent Molecular Properties becomes relevant [69].

2 Molecular fragment and functional group shape variation indices

Although for detailed shape characterization the so-called Shape Group Methods [39–
46] (based on the algebraic-topological homology group approach applied to various
curvature-based truncations of molecular isodensity contour surfaces) have provided
good correlations between electron density shape and molecular activity [39–46], in
some alternative applications simpler approaches are still useful, hence, the follow-
ing discussion on local shape variation indices will be presented in a general way,
applicable to several types of shape descriptors.

Following the notations of ref. [38], where the concept of molecular fragment “Site
Dominance Index” has been introduced, we are going to discuss the question, how
much shape variation can occur in a functional group or a molecular fragment of
a given stoichiometry and bond-connectivity, when the effects relative to the shape
changes of the surrounding molecular parts are considered? In fact, these indices may
be viewed as addressing the following question: compared to the global shape changes
between molecules, the shape of the fragment shows smaller or greater changes? The
actual formulation will ensure the fulfillment of a normalization condition, that is, the
numerical characterization by this index will provide values falling within the [0,1]
interval.
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For some molecule A and molecular fragment F of molecule A, we shall consider
some shape descriptors, and distinguish the global shape descriptor gsh(A), applicable
for any molecule A, and an associated local shape descriptor lsh(F), applicable for any
fragment F of any molecule A, where we also assume that these two shape descriptors
are consistent with one another, that is, if the local molecular fragment F is replaced
with the complete molecule A, then one obtains

lsh(A) = gsh(A). (3)

Such shape descriptors may be based on some internal coordinates with reference
to the atomic nuclei, or they may be chosen as the shape descriptors of the Shape
Group Method, as applied to the molecular electron-density clouds, as long as they
fulfill the above requirements.

In addition, we will consider global and local shape-similarity measures, denoted
by gshs(A1, A2) and lshs(F1, F2), involving molecules A1 and A2, and their fragments
F1 and F2, respectively.

Specifically, based on the above global and local shape descriptors gsh(A) and
lsh(A), we consider global and local shape-similarity measures, gshs(A1, A2) and
lshs(F1, F2), defined in terms of some appropriate method for comparisons, suitable
for the shape descriptors gsh(A) and lsh(A) used. In order to formalize the above, we
consider a general comparison function, denoted by comp(gsh(A1), gsh(A2)), leading
to the following expressions:

gshs(A1, A2) = comp(gsh(A1), gsh(A2)), (4)

and, by analogy

lshs(F1, F2) = comp(lsh(F1), lsh(F2)). (5)

Note that, both the global and local shape-similarity measures are restricted to the
[0,1] unit interval:

0 ≤ gshs(A1, A2) ≤ 1, (6)

for any pair of molecules A1 and A2, and

0 ≤ lshs(F1, F2) ≤ 1, (7)

for any pair of fragments F1 and F2. Note that the value 0 practically never occurs,
except in the case of some rather simplistic shape descriptors.

The above general concepts were used earlier [38] to define Site Dominance Indi-
ces for molecular fragments, where the emphasis was placed on measuring similarity
enhancement by local domains of molecules. Since in the present study we are inter-
ested in the range of shape changes of functional groups and more general molecular
fragments, we are not going to follow the earlier approach.
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Here we deal with a different question that requires somewhat different tools, spe-
cifically, we are going to introduce the following fragment shape variation index.

Consider a pair of local fragments F1 and F2 of molecules A1 and A2, where, typ-
ically, the local fragments F1 and F2 are functional groups of the same stoichiometry
and bond connectivity. The local or fragment shape variation index FSVI, denoted as
fsvi(F1, F2, A1, A2) is defined as

fsvi(F1, F2, A1, A2) = gshs(A1, A2)/[lshs(F1, F2) + gshs(A1, A2)]. (8)

As a consequence of the restrictions on the possible values of gshs(A1, A2) and lshs(F1,
F2), specified by inequalities (6) and (7), the possible values of the fragment shape
variation index fsvi(F1, F2, A1, A2) are also restricted to the [0,1] interval:

0 ≤ fsvi(F1, F2, A1, A2) ≤ 1, (9)

for any pair of fragments F1 and F2 of any pair of molecules A1 and A2.

3 Some comments on applications of fragment shape variation indices

The fragment shape variation index fsvi(F1, F2, A1, A2), as expressed with respect to
the actual global and local shape-similarity measures gshs(A1, A2) and lshs(F1, F2),
and ultimately by the global and local shape descriptors gsh(A) and lsh(A), provides
information on the variability of the local shape of the fragment (functional group)
F, as represented by F1 and F2, when the two molecules, A1 and A2 are compared.
The smaller the local similarity of F1 and F2 within molecules A1 and A2, taken
in the context of the global similarities of the molecules A1 and A2, the greater the
variability of the local shapes of the fragments (functional groups).

In turn, a greater variability value for fsvi(F1, F2, A1, A2) indicates a greater influ-
ence of the molecules A1 ad A2, as whole molecules, on the fragment shapes.

In some sense, a large numerical value for the fragment shape variation index
fsvi(F1, F2, A1, A2) may indicate a local concentration of shape changes in the local
region, that may also indicate a greater change in reactivity.

The actual scaling with respect to the global shape similarity measure ensures that
a value of 0.5 for the fragment shape variation index,

fsvi(F1, F2, A1, A2) = 0.5 (10)

represents the special case when the local or fragment shape changes and the global,
molecular shape changes are characterized by equal measures. Note, however, that this
occurrence is determined by the actual shape similarity measures used, for example,
a shape similarity measure based on some simple, bond length or bond angle internal
coordinates may provide the number 0.5, indicating a “tie” between the extents of
local and global shape changes, whereas using some more sophsticaded and detailed
shape measures, such as those based on the Shape Groul methods, a different numer-
ical value can be obtained, and a formal “tie” of value 0.5 for the fragment shape
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variation index may be associated with a different pair of molecules. Consequently,
when quoting such fragment shape variation index values, the actual shape similarity
measures used must also be specified.

In some forthcoming studies we shall attempt to provide a direct connection between
electron density predictions based on the Holographic Electron Density Theorem and
the numerical indices for such fsvi(F1, F2, A1, A2) results for a family of simple
molecules with common functional groups.

4 Summary

Molecular fragment shape variation indices have been introduced with the purpose of
providing simple, numerical indications on the differences in the influence of the rest
of the molecule on the shape of a given type of molecular fragment, typically, func-
tional group. The connections of this approach to the Holographic Electron Density
Theorem, specifically, to the version of this theorem applicable to latent molecular
properties, have been noted.
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